Journal of Organometallic Chemistry, 410 (1991) C9-C12 Elsevier Sequoia S.A., Lausanne JOM 21857PC

Preliminary communication

Koordinationschemie tripodaler Triisocyanid-Liganden: Synthese von Komplexen des Typs $CH_3C[CH_2NC-M(CO)_x]_3$ (M = Cr, W, x = 5; M = Fe, x = 4) und Kristallstruktur von $CH_3C[CH_2NC-W(CO)_5]_3$

F. Ekkehardt Hahn * und Matthias Tamm

Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin, W-1000 Berlin 12 (Deutschland)

(Eingegangen den 5. März 1991)

Abstract

The triisocyanide ligand CH₃C(CH₂NC)₃, time, reacts with metal carbonyls M(CO)_x (M = Cr, W, x = 6; M = Fe, x = 5) to give the triply metal carbonyl substituted complexes CH₃C[CH₂NC-M(CO)_x]₃ (M = Cr, W, x = 5; M = Fe, x = 4). CH₃C[CH₂NC-W(CO)₅]₃ was characterized by an X-ray structure determination.

Wir berichteten kürzlich über die Darstellung und das koordinationschemische Verhalten einer Reihe tripodaler Triisocyanid-Liganden [1-3]. Diese Liganden wurden entwickelt, um die bisher unbekannten Chelatkomplexe mit tripodalen Triisocyanid-Liganden zu erhalten. Wir haben auch versucht, tripodale Liganden zur Überbrückung einer Trimetall-Einheit, wie in Fe_3CO_{12} oder Ru_3CO_{12} einzusetzen [4]. Bei der Umsetzung dieser Trimetall-Cluster mit den beschriebenen [1-3] Triisocyanid-Liganden konnten wir aber nur die bereits beschriebene [4] Zersetzung des Trimetall-Clusters beobachten. Wir schlagen daher einen neuen Weg zur Synthese Triisocyanid-substituierter Trimetall-Cluster vor und berichten hier über erste Ergebnisse auf diesem Wege.

Einkernige Metallcarbonyle lassen sich mit einzähnigen Isocyaniden substituieren [5,6]. Wird ein Triisocyanid-Ligand $R(NC)_3$ mit drei Äquivalenten eines einkernigen Metallcarbonyls umgesetzt, so werden Komplexe der Form $R[NC-M(CO)_x]_3$ erhalten (R = Cyclohexyl [4]). Bei geeigneter Geometrie von R sollte es möglich sein, einen $R(NC)_3$ -substituierten Trimetall-Cluster $R[NC-M(CO)_{x-1}]_3$ durch Abspaltung von 3 Carbonyl-Liganden aus $R[NC-M(CO)_x]_3$ zu erhalten. Durch dieses Vorgehen wird die Substitutionsreaktion am bereits gebildeten Trimetall-Cluster vermieden. Der Triisocyanid-Ligand darf allerdings nicht zu Bildung von Chelatkomplexen geeignet sein, sondern muß mit drei Äquivalenten des einkernigen Metallcarbonyls jeweils unter Substitution nur einer Carbonyl-Funktion reagieren.

Schema 1. Synthese des Liganden time und seine Reaktion mit einkernigen Metallcarbonylen.

Wir haben den Liganden $CH_3C(CH_2-NC)_3$, time, der diesen Anforderungen enspricht, hergestellt und seine Reaktion mit einkernigen Metallcarbonylen untersucht. Der Ligand time wird gemäß Schema 1 erhalten. Für die Synthese der Isocyanid-Funktionen wurde die Methode von Ugi und Meyr [7] gewählt. Der Ligand ist ein farbloser kristalliner Feststoff, der vollständig charakterisiert wurde [8*].

Bei der Umsetzung von time mit $M(CO)_5(THF)$ (M = Cr, W) [5] oder $Fe(CO)_5$ [6] erhielten wir die Komplexe $CH_3C[CH_2NC-M(CO)_x]_3$ (M = Cr, W, x = 5; M = Fe, x = 4) [9*]. Die Verbindungen sind mit Ausnahme des Luft- und Licht-empfindlichen $CH_3C[CH_2NC-Fe(CO)_4]_3$, luftstabile kristalline Feststoffe, die vollständig charakterisiert wurden. Sie sind in Ethern und chlorierten Kohlenwasserstoffen gut, in Hexan und Pentan aber nur schlecht löslich.

In den ¹³C-NMR Spektren des Chrom- und des Wolfram-Derivates sind die Absorptionen für die *cis*- und die *trans*-Carbonyl-Gruppen deutlich zu unterscheiden, während für $CH_3C[CH_2NC-Fe(CO)_4]_3$ aufgrund der Pseudorotation nur eine Carbonyl-Resonanz im ¹³C-NMR Spektrum gefunden wird. Die Isocyanid-Absorptionen im IR-Spektrum liegen im erwarteten Bereich [4].

 $CH_3C[CH_2NC-W(CO)_5]_3$ läßt sich aus Chloroform in Form schöner farbloser Kristalle gewinnen. Die Röntgenstrukturanalyse [10*] dieser Verbindung (Fig. 1) bestätigt die angenommene Molekülgeometrie. Drei $W(CO)_5$ -Einkeiten sind über den Liganden time verbrückt. Bindungslängen und Winkel in $CH_3C[CH_2NC-$

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Fig. 1. ORTEP-Zeichnung von $CH_3C[CH_2NC-W(CO)_5]_3$. Eine Isocyanid-Gruppe ist fehlgeordnet. Von den alternativen Positionen (C18A, C18B, N3A, N3B) wurden nur die mit A bezeichneten Atome dargestellt. Ausgewählte Bindunglängen [Å] und -winkel [°]: W1-C4 2.08(2), W1-C5 1.99(2), W1-C6 2.17(2), W1-C7 2.04(2), W1-C8 2.02(2), W1-C9 1.99(2), W2-C11 2.11(2), W2-C12 2.02(2), W2-C13 2.04(2), W2-C14 1.93(2), W2-C15 2.00(2), W2-C16 1.91(2), W3-C18A 1.98(4), W3-C19 2.06(3), W3-C20 2.11(2), W3-C21 1.95(2), W3-C22 2.04(3), W3-C23 2.02(2); die Winkel an den drei W-Atomen weichen nur geringfügig von den Winkeln eines regulären Oktaeders ab. Die größe Abweichung wird für die Winkel unter Einbeziehung der fehlgeordneten Atome C18A und C18B beobachtet.

 $W(CO)_5]_3$ entsprechen den Erwartungen für Pentacarbonylwolframisocyanide (Fig. 1). Die W-CN- und W-CO-Bindungen sind fast linear. Die Abstände zwischen den drei W-Atomen liegen zwischen 7.65 Å und 9.42 Å.

 $CH_3C[CH_2NC-Fe(CO)_4]_3$ sollte beim Bestrahlen zum Cluster unter Bildung von 3 Fe-Fe-Bindungen reagieren. Diese Reaktion ist geometrisch möglich. Beim Bestrahlen von $CH_3C[CH_2NC-Fe(CO)_4]_3$ wird auch tatsächlich eine starke CO-Entwicklung beobachtet und die gelbe Reaktionslösung färbt sich innerhalb weniger Minuten dunkelgrün. Nach 1 h läßt sich die Ausgangsverbindung nicht mehr nachweisen (DC-Kontrolle). Bisher gelang es noch nicht, Kristalle dieses Reaktionsproduktes zu erhalten. Die Kernresonanzspektren der Verbindung zeigen die Präsenz des Liganden time sowie von Carbonyl-Gruppen. Weitere Arbeiten zur Klärung der Molekülstruktur dieser Verbindung sind im Gange.

Literatur und Bemerkungen

- 1 F.E. Hahn und M. Tamm, Angew. Chem., 103 (1991) 213.
- 2 F.E. Hahn und M. Tamm, J. Organomet. Chem., 398 (1990) C19.
- 3 F.E. Hahn, M. Tamm, A. Dittler-Klingemann und R. Neumeier, Chem. Ber., im Druck.
- 4 R.A. Michelin und R.J. Angelici, Inorg. Chem., 19 (1980) 3853.

- 5 D. Lentz, Chem. Ber., 117 (1984) 415.
- 6 W. Hieber und D. von Pigenot, Chem. Ber., 89 (1956) 616.
- 7 I. Ugi und R. Meyr, Chem. Ber., 93 (1969) 239.
- 8 Time bildet farblose Kristalle, die löslich in chlorierten Kohlenwasserstoffen, Aceton, und Ethern sind. Gef.: C, 65.74; H, 6.19; N, 28.37. C₈H₉N₃, M = 201.23, ber.: C, 65.29; H, 6.16; N, 28.55%. ¹H-NMR (CDCl₃, 80 MHz, δ, ppm): 3.51 (s, br, 6H, CH₂-NC); 1.27 (s, 3H, CH₃-C). ¹³C-NMR (CDCl₃, 20.15 MHz, δ, ppm) 161.3 (s, br, CH₂NC); 45.7 (t, ¹J(NC) = 6.3 Hz, CH₂-NC); 38.3 (CH₃-C); 18.0 (CH₃-C). IR (KBr, ν, cm⁻¹): 2150 (NC).
- 9 In einer typischen Synthese für die Darstellung von CH₃C[CH₂NC-W(CO)₅]₃ wurden 717 mg (2.04 mmol) W(CO), in 180 ml absolutem THF mit einer Hochdruck-Quecksilberdampflampe bis zur Beendigung der CO-Entwicklung bestrahlt (ca. 2 h). Es bildet sich eine leicht gelbe Lösung von W(CO), THF. Zu dieser Lösung gibt man unter Argon-Schutzgas 100 mg (0.68 mmol) time und rührt die Reaktionsmischung 12 h bei Raumtemperatur. Danach wird das Lösungsmittel i. Vak. entfernt und der Rückstand wird über neutralem Al₂O₃ (4% H₂O) mit Et₂O chromatographiert. Man erhält 500 mg (0.45 mmol, 66%) farbloses CH₃C[CH₂NC-W(CO)₅]₃. Gef.: C, 25.51; H, 1.10; N, 3.63. $C_{23}H_9N_3O_{15}W_3$, M = 1118.88, ber.: C, 24.69; H, 0.81; N, 3.76%. ¹H-NMR (CDCl₃, 80 MHz, δ , ppm): 3.80 (s, 6H, CH2-NC); 1.39 (s, 3H, CH3-C). ¹³C-NMR (CDCl3, 20.15 MHz, 8, ppm) 194.6 (trans-CO); 193.5 (cis-CO); 152.0 (CH2NC); 48.4 (CH2-NC); 41.1 (CH3-C); 18.7 (CH3-C). IR (KBr, v, cm⁻¹): 2165 (m, NC); 2065 (s, CO); 2000 (m sh, CO); 1925 (vs br, CO). Auf analogem Wege wird CH₃C[CH₂NC-Cr(CO)₅]₃ in 42% Ausbeute erhalten. CH₃C[CH₂NC-Cr(CO)₅]₃. Gef.: C, 37.91; H, 1.49; N, 5.96. $C_{23}H_9N_3O_{15}Cr_3$, M = 723.33, ber.: C, 38.19; H, 1.25; N, 5.81%. ¹H-NMR (CDCl₃, 80 MHz, δ, ppm): 3.73 (s, 6H, CH₂-NC); 1.38 (s, 3H, CH₃-C). ¹³C-NMR (CDCl₃, 20.15 MHz, δ, ppm) 215.3 (trans-CO); 214.2 (cis-CO); 171.8 (CH₂NC); 48.5 (CH₂-NC); 40.8 (CH₃-C); 18.5 (CH₃-C). IR (KBr, v, cm⁻¹): 2168 (m, NC); 2062 (s, CO); 2005 (w sh, CO); 1935 (vs br, CO). Die Eisen-Verbindung wird nach dem von Hieber et al. [7] beschriebenen Verfahren aus Fe(CO)₅ und time in Toluol-Lösung im Autoklaven in 78% Ausbeute erhalten. CH₃C[CH₂NC-Fe(CO)₄]₃. Gef.: C, 37.10; H, 1.51; N, 6.66. $C_{20}H_9N_3O_{12}Fe_3$, M = 650.85, ber.: C, 36.91; H, 1.39; N, 6.46%. ¹H-NMR (CDCl₃, 80 MHz, δ, ppm): 3.82 (s, 6H, CH₂-NC); 1.37 (s, 3H, CH₃-C). ¹³C-NMR (CDCl₃, 20.15 MHz, δ , ppm) 212.1 (CO); 168.9 (CH₂NC); 49.2 (CH₂-NC); 41.2 (CH₃-C); 18.5 (CH₃-C). IR (KBr, ν , cm⁻¹); 2188 (m, NC); 2059 (s, CO); 2003 (s sh, CO); 1957 (vs br, CO).
- 10 Kristalldaten für CH₃C[CH₂NC-W(CO)₅]₃: C₂₃H₉N₃O₁₅W₃, M = 1118.88, monoklin Raumgruppe $P2_1/n$ (nicht-Standardaufstellung vom $P2_1/c$, Nr. 14), a = 9.887(17), b = 20.161(29), c = 16.031(22)Å, $\beta = 92.12(13)^\circ$, V = 3193(7)Å³, $d_c = 2.327$ g cm⁻³ für Z = 4, $\mu = 103.9$ cm⁻¹. Messung mit Mo- K_a -Strahlung (0.71069 Å) bei $-100(5)^\circ$ C. Syntex P2₁ Diffraktometer, Kristallgröße 0.25×0.17 $\times 0.15$ mm, 3649 symmetrieunabhängige Intensitäten mit $2^\circ \leq 2\theta \leq 45^\circ$. Datenreduktion mit Lorenz-Polarisations, isotroper Zerfalls- und Absorptionskorrektur. Lösung mit Patterson-, Verfeinerung mit Fourier- und least-squares-Methoden. R = 0.0532, $R_w = 0.0417$ für 2230 Strukturfaktoren $F_o^2 \geq 3\sigma(F_o^2)$ und 413 verfeinerte Parameter. Weitere Einzelheiten zur Kristallstrukturanalyse können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlichtechnische Information, mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55240, der Autorennamen und des Zeitschriftenzitats angefordert werden.